AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES
 SCHOOLS ENRICHMENT CENTRE (AIMSSEC)
 AIMING HIGH

ODDS GAME

In the 2 Odds in 5 game you pick out two balls at random from a bag containing 5 balls numbered $2,3,4,5$ and 6 .
If the total is odd you win. If it is even you lose.
Are you equally likely to win or to lose (a fair game)?
In the 3 games shown below, the rules are the same.
Which set of balls would you choose to give yourself the best chance of winning?
Do your own experiments. Make number cards and put them in an envelope or bag. For interactive computer simulations of the games see http://nrich.maths.org/4308

4 in 5 game

To do interactive computer simulations of these games see http://nrich.maths.org/4308

HELP

$2 \text { in } 5$ Game		FIRST CHOICE					Play the 2 odds in 5 game several times and record the results. You are conducting trials in a probability experiment.
		2	4	6	3	5	
SECOND CHOICE	2	X			5		Fill in a table colouring the odd and even totals in contrasting colours. Put crosses to show you can't choose the same ball twice. This is called a sample space diagram. The sample space diagram shows that, when you choose 2 cards at random there are exactly 20 possible outcomes, that is 20 elements in the sample space.
	4	6	X				
	6		10	X			
	3				X	8	
	5					X	

NEXT

None of the sets looked at so far gives a fair game.
Can you find a set of numbers that would give a fair game?

MAKING SPINNERS FOR THESE GAMES

You can simulate the games using spinners made from the templates below, a pin and a paperclip.

Mark equal sectors on the spinners for all the numbers for the game or for the different colours.

Cut out and pin on a flat surface through the paper clip and the template (as in the picture) making sure that the paper clip spins freely.

PROOF SORTING EXERCISE FOR YEAR 12 AND 13 STUDENTS.

This is the $1^{\text {st }}$ statement. Cut out the strips and re-construct the proof by arranging the remaining statements in the correct order.

Odds and Colours Games

Imagine we play the game with a even numbered balls and b odd numbered balls.
If a and b are any two consecutive triangle numbers, the reverse argument holds.
We have proved that a necessary and sufficient condition for a game of this type to be a fair game is that the total number of balls $(a+b)$ is a square number n^{2}, moreover a and b turn out to be consecutive triangle numbers.

For a fair game we must have the probability of an even sum equal to the probability of an odd sum; that is:
$\left(a^{2}-a\right)+\left(b^{2}-b\right)=a b+a b$
$\Leftrightarrow a^{2}-2 a b+b^{2}=a+b$
$\Leftrightarrow \quad(a-b)^{2}=a+b$
This suggests that a and b are consecutive triangle numbers n because the rule for generating the sequence of triangle numbers is that the difference between the $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}-1)^{\text {th }}$ number is equal to n.

Proof:

For a even and b odd numbers this is the sample space diagram, with blue for even totals and yellow for odd totals:

	a even	b odd
a even	$a^{2}-a$	$a b$
b odd	$a b$	$b^{2}-b$

> We know that
> $\begin{aligned} a+b & =n^{2}\end{aligned}$
> and $a-b=n \quad($ or $b-a=n$ if $b>a)$.

We have proved that: the game will be a fair game if and only if $(a-b)^{2}=a+b$
This leads us to think that:

- the total number of balls (i.e. $a+b$) has to be a square number, say n^{2};
- the difference between the number of odd and even balls is n.

Adding the two equations:

$2 a=n^{2}+n$
$\Rightarrow a=1 / 2\left(n^{2}+n\right)$
=> $a=1 / 2 n(n+1)$
This formula gives a as the $n^{\text {th }}$ triangular number.
Similarly, b is the $(n-1)^{\text {th }}$ triangular number $1 / 2 n(n-1)$.
Conjecture: The game will be a fair game if and only if the number of balls is a square number, in which case the number of odd, and even balls, a and b, are two consecutive triangle numbers.

NOTES FOR TEACHERS

For learning activities for different ages and attainment levels see the Inclusion and Home Learning Guide.

SOLUTION

2 in 5 game

Probability of an even sum is $\frac{8}{20}=\frac{2}{5}$.
Probability of an odd sum is $\frac{12}{20}=\frac{3}{5}$.
So it is not a fair game.

	2	4	6	3	5
2	X	6	8	5	7
4	6	X	10	7	9
6	8	10	X	9	11
3	5	7	9	X	8
5	7	9	11	8	X

2 in 6 game
Probability of an even sum is
$\frac{14}{30}=\frac{7}{15}$.
Probability of an odd sum is
$\frac{16}{30}=\frac{8}{15}$.
So it is not a fair game.

	2	4	6	8	3	5
2	X	6	8	10	5	7
4	6	X	10	12	7	9
6	$\mathbf{8}$	10	X	14	9	11
8	10	12	14	X	11	13
3	5	7	9	11	X	8
5	7	9	11	13	8	X

4 in 5 game
Probability of an even sum is
$\frac{12}{20}=\frac{3}{5}$.
Probability of an odd sum is $\frac{8}{20}=\frac{2}{5}$.
So it is not a fair game.

	1	3	5	7	6
1	X	4	6	8	7
3	4	X	8	10	9
5	6	8	X	12	11
7	8	10	12	X	13
6	7	9	11	13	X

5 in 6 game
Probability of an even sum is
21
7 $\frac{21}{30}=\frac{7}{10}$.
Probability of an odd sum is $\frac{9}{30}=\frac{3}{10}$.
So it is not a fair game.

	1	3	5	7	9	4
1	X	4	6	8	10	5
3	4	X	8	10	12	7
5	6	8	X	12	14	9
7	8	10	12	X	16	11
9	10	12	13	16	X	13
4	5	7	9	11	13	X

See page 11 for a proof of the conditions for a game of this type to be a fair game.

Why do this activity?

In this activity learners can explore and discuss two types of probability: experimental and theoretical. They can experience teamwork in trying to find an example of a fair game of this type and trying to formulate a conjectures about what conditions might lead to a fair game. Older learners can work on the challenge of proving the conjectures.

Learning objectives

In doing this activity students will have an opportunity to:

- conduct probability experiments and record results;
- experience and discuss random sampling;
- learn to use a sample space diagram to show all the elements in a sample space and to analyse the theoretical probabilities of different events;
- reflect on the differences between experimental probability and theoretical probability;
- find and prove conjectures about conditions for a fair game.

Generic competences

In doing this activity students will have an opportunity to:

- conduct probability experiments, reflect on the differences between experimental probability and theoretical probability and discuss the types of applications that require the use of one or the other;
- work as a team towards a common goal;
- communicate in writing, speaking and listening:
- exchange ideas, criticise, and present information and ideas to others;
- analyze, reason and record ideas effectively.

Diagnostic Assessment This should take about 5-10 minutes.

1. Write the question on the board, say to the class:
"Put up 1 finger if you think the answer is A, $\mathbf{2}$ fingers for $B, \mathbf{3}$ for \mathbf{C} and $\mathbf{4}$ for D ".
2. Notice how the learners responded. Ask a learner who gave answer A to explain why he or she gave that answer and DO NOT say whether it is right or wrong but simply thank the learner for giving the answer.
3. It is important for learners to explain the reason for their answer to clarify their own thinking and to practise communication skills.
4. Then do the same for answers

			1	2	3	4	5	6
	Two dice are rolled together. The							
two numbers are added together.	1	2	3	4	5	6	7	
Find the probability of getting a total of less than 4 or more than 10.	Die 2	3	3	4	5	5	6	7

B, C and D. Try to make sure that learners listen to these reasons and try to decide if their own answer was right or wrong.
5. Ask the class again to vote for the right answer by putting up $1,2,3$ or 4 fingers. Notice if there is a change and who gave right and wrong answers.
6. The concept is needed for the lesson to follow, so explain the right answer or give a remedial task.
A. is the correct answer. There are 6 possible outcomes out of 36 .

Common Misconceptions

B. Maybe a guess
C. These learners might have included scores of 4 and 10. Could be a misunderstanding about 'less than'.
D. Maybe a guess
https://diagnosticquestions.com

Suggestions for teaching Years 9 to 12

For learning activities for younger learners including pre-school and primary years, see the Inclusion and Home Learning Guide.
Resources: You need small objects of two different colours that are the same in all respects other than colour, such as counters or buttons or the cards cut out from page 4, and a bag or envelope.
Start with the diagnostic question so that learners will then have sample space diagrams (2-way tables) in mind when they tackle the activity.

The notes that follow are based on lessons with a group of 14 year old students. The notes are in two parts: the first part for those who wish to use the activity for a single lesson on probability and sample space diagrams or tree diagrams. The second part is for those who wish to follow this up with a collaborative task that leads to interesting and unexpected results, and this is also suitable for older students.

LESSON 1 Start by playing the 2 in 5 game using numbered cards in a bag or using the computer simulation http://nrich.maths.org/4308. The computer simulation generates lots of experimental data quickly, freeing time to focus on predictions, analysis and justifications. Calculating the theoretical probabilities provides a motivation for using sample space diagrams or perhaps tree diagrams.

Play the game no more than ten times, so that everyone gets 'a feel' for the game but doesn't have sufficient results to draw conclusions about the probabilities. Then ask everyone to decide whether they think the game is fair and ask them to do some maths to support their decision.

While everyone is working, the group leader or teacher should circulate and observe the methods of recording results being used, such as organised lists and 2-way tables.

At this point the younger children could play the RED AND BLUE GAMES and the young people of 16 or older could work on the tasks as explained in the section for UPPER SECONDARY.

The group should then discuss their methods of trying to find out whether the 2 in 5 game is a fair game. Choose individuals who used different methods to explain to everyone else what they did, recording what they did on the board. Compare the different methods and emphasise the merits of a 2-way table, sample space method rather than a listing method. Those who are confident with tree diagrams may prefer to continue using them.

If you have the internet, use the computer interactivity a large number of times to confirm that the experimental probability matches closely to the theoretical probability that has been calculated. There are opportunities here for rich discussion about how closely we expect an experimental probability to match the theory.

HOMEWORK OR FOLLOW-ON QUESTION FOR THE NEXT LESSON:

Now work on the Odds Games with different numbers in the bag as described on page 1.

Everyone should think on their own about which of the four games they would choose to play, to maximise their chances of winning and work out the respective probabilities. Next lesson, once everyone has had a short time to reflect, work in pairs to discuss the choices people have made, and to justify decisions. There is often disagreement about which game offers the best chance of winning, so the group together should compare ideas and try to use efficient listing methods.

Lesson 2: You might use the interactivity http://nrich.maths.org/4308 to do some experimental trials. To confirm that the experimental probability is close to the calculated one, you would have to do thousands of random trials.

Now write up on the board a set E, which contains five large even numbers and one large odd numbers. Make them large enough that calculations would be off-putting! Ask the group to work in pairs to calculate the probability of winning with set E. The intention is to alert everyone that the numbers themselves don't matter, but the numbers of odds and evens is the important point. Set E has the 5 in 6 structure so we already know the chance of winning.

Then the group can be introduced to this sort of sample space diagram where odds and evens are collected together, and discuss and explain the entries in the tables:

	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{O}	None of the sets looked at so far gives a fair game. Ask "How could we find out whether there are any
\mathbf{E}	\mathbf{X}	\mathbf{E}	\mathbf{E}	\mathbf{E}	\mathbf{E}	$\mathbf{0}$	Ast
\mathbf{E}	\mathbf{E}	\mathbf{X}	\mathbf{E}	\mathbf{E}	\mathbf{E}	$\mathbf{0}$	sets of numbers that give a fair game?"

Those already identified as not being fair games can be crossed off. Then split into pairs to work on different combinations and report back to the whole group

Record combinations that have been checked on the board with a tick or a cross to show whether they are fair or not. If something has two ticks or two crosses, it could be accepted as being confirmed.

When disagreements arise, ask other pairs to resolve them.
There will be opportunities while everyone is working to stop and share insights that will make the job easier.

For example: "None of the combinations with zero will work because..."
"If 3 odds and 2 evens won't work, 2 odds and 3 evens won't either, because..."
"You can't have the same number of evens and odds because..."
Eventually, there will be a sea of crosses on the board and just a few combinations that work. If the group checks all possibilities up to 9 balls in total then they will find four that give fair games, that is two, with two equivalent swopping odds and evens. Stop
and consider what the fair sets have in common. This may lead to some new conjectures about the total number of balls, so test the conjecture with 16 balls in total.

Once there is some confirmation about the total number of balls needed for fair games, conjectures can also be made about how these should be split into odds and evens. People can set to work to test examples with large numbers, using the simplified sample space method above. Talk about how valuable it is to work collaboratively as part of a mathematical community, and how difficult it would have been to have reached the same insights working alone.

Key questions

- How can you decide if a game is fair?
- What are the most efficient methods for recording possible combinations?
- How can we make this difficult task (of finding a fair game) more manageable?

Follow up

The activity In a Box https://aiminghigh.aimssec.ac.za/in-a-box/ offers another context for exploring exactly the same game and underlying mathematical structure. Use it as a follow-up a few weeks after working on Odds \& Evens.
Also see Special Sums https://aiminghigh.aimssec.ac.za/special-sums/
Red or Black: https://aiminghigh.aimssec.ac.za/red-or-black-game/
Nines or Tens https://aiminghigh.aimssec.ac.za/nines-and-tens/
Two Aces https://aiminghigh.aimssec.ac.za/two-aces/
In the Bag https://aiminghigh.aimssec.ac.za/in-the-bag/
Twos Company https://aiminghigh.aimssec.ac.za/twos-company/
Same Sweets https://aiminghigh.aimssec.ac.za/same-sweets

Prove your conjectures about the conditions for a fair game.

Although it is unlikely that many students will be able to prove their conjectures algebraically on their own, the following proof is sufficiently accessible to be worth sharing with at least some learners in a class of 14 to 16 year olds and for students in the last two years of school mathematics. There are several ways to use this resource:

- Present it as an elegant way of proving the ideas the learners have discovered.
- Use it as a 'proof sorting' exercise where the proof is cut into sections and mixed up for students to reassemble into the correct order (see page 5).
- Present the proof on the board and organise a class discussion about it with a Q\&A session. Then erase it and ask students to recreate it for themselves.
- Print out the proof on page 12 , and distribute it to students for them to make sense of, and for them to annotate so that they could talk through the proof, line by line and explain it to someone who hadn't met it yet.

Odds and Colours Games

Imagine we play the game with a even numbered balls and b odd numbered balls.
Conjecture: The game will be a fair game if and only if the number of balls is a square number, in which case the number of odd, and even balls, a and b, are two consecutive triangle numbers.

Proof:

For a even and b odd numbers this is the sample space diagram, with blue for even totals and yellow for odd totals:

	a even	b odd
a even	$a^{2}-a$	$a b$
b odd	$a b$	$b^{2}-b$

For a fair game we must have the probability of an even sum equal to the probability of an odd sum; that is:
$\left(a^{2}-a\right)+\left(b^{2}-b\right)=a b+a b$
$\Leftrightarrow a^{2}-2 a b+b^{2}=a+b$
$\Leftrightarrow \quad(a-b)^{2}=a+b$
We have proved that: the game will be a fair game if and only if $(a-b)^{2}=a+b$
This leads us to think that:

- the total number of balls (i.e. $a+b$) has to be a square number, say n^{2};
- the difference between the number of odd and even balls is n.

This suggests that a and b are consecutive triangle numbers n because the rule for generating the sequence of triangle numbers is that the difference between the $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}-1)^{\text {th }}$ number is equal to n .

We know that

$$
\begin{aligned}
a+b & =n^{2} \\
\text { and } a-b & =n \quad(\text { or } b-a=n \text { if } b>a) .
\end{aligned}
$$

Adding the two equations:
$2 a=n^{2}+n$
=> $a=1 / 2\left(n^{2}+n\right)$
$\Rightarrow a=1 / 2 n(n+1)$
This formula gives a as the $n^{\text {th }}$ triangular number.
Similarly, b is the $(n-1)^{\text {th }}$ triangular number $1 / 2 n(n-1)$.
If a and b are any two consecutive triangle numbers, the reverse argument holds.
We have proved that a necessary and sufficient condition for a game of this type to be a fair game is that the total number of balls $(a+b)$ is a square number n^{2}, moreover a and b turn out to be consecutive triangle numbers.

An isomorphic game with balls of 2 different colours (a red balls and b green balls) is a fair game with a win being picking two balls of the same colour.

