

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES SCHOOLS ENRICHMENT CENTRE (AIMSSEC)

AIMING HIGH

KISSING CIRCLES

The outer circle, centre O, has radius 2 units. The points O, A, A', B and C are centres of circles that are tangent to each other where they touch.

It can be shown that OACB is a rectangle.

- 1. Prove that OA⊥OB
- 2. Find the radii *b* and *c* and the ratio of the radii of the circles with centres A, B and C.
- 3. What do you notice about triangle OAB?

HELP

Where the circles touch they have a common tangent and each radius is perpendicular to the tangent. What does this tell you about the lines joining the centres of the circles?

NEXT – for students who enjoy challenges and are not daunted by having to do a lot of algebra. The proof that OACB is a rectangle can be done using coordinate geometry, the formula for the distance between two points and the fact that the circles all touch each other.

1.Prove that OA \perp O. Then use Pythagoras Theorem for \triangle AOB and the fact that the circle centre B touches the outer circle to show that $b = \frac{2}{3}$.

2. The circle centre C touches 3 other circles, use this:

a) Write down 3 equations involving p, q and c and, from them, 3 expressions equal to $p^2 + q^2 - c^2$.

b) Find 3 linear expressions involving p, q and c.

c) Find an expression giving p in terms of c.

d) Find an expression giving q in terms of c.

e) Eliminate p and q to produce a quadratic equation in c and solve this equation to find c.

3. For each value of c, find p and q and identify the two circles to which these values correspond.

4. Explain why the values found show that OACB is a rectangle.