KISSING CIRCLES

The outer circle, centre O , has radius 2 units. The points $\mathrm{O}, \mathrm{A}, \mathrm{A}^{\prime}, \mathrm{B}$ and C are centres of circles that are tangent to each other where they touch.

It can be shown that OACB is a rectangle.

1. Prove that $\mathrm{OA} \perp \mathrm{OB}$
2. Find the radii b and c and the ratio of the radii of the circles with centres A, B and C.
3. What do you notice about triangle OAB?

HELP

Where the circles touch they have a common tangent and each radius is perpendicular to the tangent. What does this tell you about the lines joining the centres of the circles?

NEXT - for students who enjoy challenges and are not daunted by having to do a lot of algebra. The proof that OACB is a rectangle can be done using coordinate geometry, the formula for the distance between two points and the fact that the circles all touch each other.
1.Prove that $\mathrm{OA} \perp \mathrm{O}$. Then use Pythagoras Theorem
 for $\triangle \mathrm{AOB}$ and the fact that the circle centre B touches the outer circle to show that $b=\frac{2}{3}$.
2. The circle centre C touches 3 other circles, use this:
a) Write down 3 equations involving p, q and c and, from them, 3 expressions equal to $p^{2}+q^{2}-c^{2}$.
b) Find 3 linear expressions involving p, q and c.
c) Find an expression giving p in terms of c.
d) Find an expression giving q in terms of c .
e) Eliminate p and q to produce a quadratic equation in c and solve this equation to find c .
3. For each value of c, find p and q and identify the two circles to which these values correspond.
4. Explain why the values found show that OACB is a rectangle.

