LINEAR SEQUENCE

Position: 1

2

3

$4 \quad 5$
1.1 The square grids below the continuous line depict negative numbers and those above the line positive numbers. Study the square grids shown above with black squares forming a pattern. How is the pattern growing? Create square grids 9,10 and 11; complete them with black squares to further develop the pattern.
1.2 How many small black squares are in the grids in the $9^{\text {th }}, 10^{\text {th }}$ and $11^{\text {th }}$ positions?
1.3 Can you predict the number of small black squares in the grids in the $50^{\text {th }}$ and $100^{\text {th }}$ positions?
1.4 What numerical number pattern can be formed from the black squares in each grid?
1.5 Obtain the general term, T_{n}, for this number pattern.
1.6 What is the mathematical name given to this kind of number pattern?
1.7 If there are 602 black squares in a square grid, determine n, the position of the square grid.

HELP

Study the following number pattern: $-3,-1,1,3,5,7, \ldots$

Workout the differences between any two consecutive terms of the number pattern.

What do you notice? What can you say about these differences?

2	4	6	8	10	$12 \ldots$.	Multiples of 2 i.e. 2 n
-3,	-1,	1,	3,	5,	$7, \ldots 2 n-5$. Notice that all these numbers are 5 less than	
the multiples of 2 (i.e. $2 n$ n), hence $2 n-5$.						

First differences....
Can you confirm that the $\mathrm{n}^{\text {th }}$ term of this number pattern is $2 \mathrm{n}-5$? How can you confirm that?
What is the $10^{\text {th }}$ term, $20^{\text {th }}$ term and the $100^{\text {th }}$ term?
Is 200 a term of this sequence? Justify your answer.
How about 245, can it be a term of this sequence? Justify your answer.

NEXT

Can you create a similar number pattern which develops in such a way that the consecutive terms have a constant difference?

What is the rule of your number pattern?
What are the next two terms of your pattern?
Can you come up with the $\mathrm{n}^{\text {th }}$ term?
Find the $50^{\text {th }}$ term of your sequence?
Is 172 (or any number of your choice picked at random) a term of the sequence?

