

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES SCHOOLS ENRICHMENT CENTRE (AIMSSEC)

AIMING HIGH

- with **black squares** to further develop the pattern.
- 1.2 How many small **black squares** are in the grids in the 9th, 10th and 11th positions?
- 1.3 Can you predict the number of small **black squares** in the grids in the 50th and 100th positions?
- 1.4 What numerical number pattern can be formed from the **black squares** in each grid?
- 1.5 Obtain the general term, $T_{n\!\scriptscriptstyle\!,}$ for this number pattern.
- 1.6 What is the mathematical name given to this kind of number pattern?
- 1.7 If there are 602 black squares in a square grid, determine n, the position of the square grid.

HELP Study the following number pattern: -3, -1, 1, 3, 5, 7, ... Workout the differences between any two consecutive terms of the number pattern. -3, -1, 1, 3, 5, 7, ... What do you notice? What can you say about these differences? 2 8 12 Multiples of 2 i.e. 2n 4 6 10 -3, 1, 3, 5, $7, \dots 2n-5$. Notice that all these numbers are 5 less than -1, the multiples of 2 (i.e. 2n), hence 2n - 5. First differences.... Can you confirm that the nth term of this number pattern is 2n - 5? How can you confirm that? What is the 10th term, 20th term and the 100th term? Is 200 a term of this sequence? Justify your answer.

How about 245, can it be a term of this sequence? Justify your answer.

NEXT

Can you create a similar number pattern which develops in such a way that the consecutive terms have a constant difference?

What is the rule of your number pattern?

What are the next two terms of your pattern?

Can you come up with the nth term?

Find the 50th term of your sequence?

Is 172 (or any number of your choice picked at random) a term of the sequence?