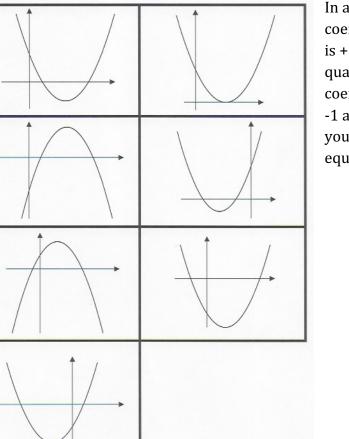


## AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES SCHOOLS ENRICHMENT CENTRE (AIMSSEC)


### AIMING HIGH

| QUADRATIC MATCHING 1 |                     |                |
|----------------------|---------------------|----------------|
| $y = x^2 + 6x - 16$  | $y = x^2 - 8x + 16$ | Gr<br>eq       |
| $y = 8 - x^2 + 2x$   | $y=6x-x^2-8$        | qu<br>ar<br>Ma |
| $y = x^2 - 10x + 16$ | $y = x^2 + 6x + 8$  | th<br>W        |
| $y = x^2 - 6x - 16$  | y=(x-8)(x+2)        | co<br>int      |
| y = (x+4)(x+2)       | y=(x+2)(4-x)        | ax<br>Ma       |
| y = (x-4)(2-x)       | y = (x-8)(x-2)      | sh<br>of<br>wi |
| y = (x-4)(x-4)       | y=(x+8)(x-2)        | eq             |

Graphs and equations of 7 quadratic functions are given here.

Match them and put them into 7 sets. Write down the coordinates of the intercepts with the axes.

Make a poster showing the graph of each function with the matching equations.



In all these examples the coefficient of the quadratic term is +1 or -1. Choose your own quadratic function where this coefficient is not equal to +1 or -1 and complete your poster your own 8<sup>th</sup> set with its graph, equations and properties.

# HELP

First use the cards in set C and match the equations of the quadratic functions with the factorised forms.

Then match the graphs given in set B to the equations to make up the 7 sets.

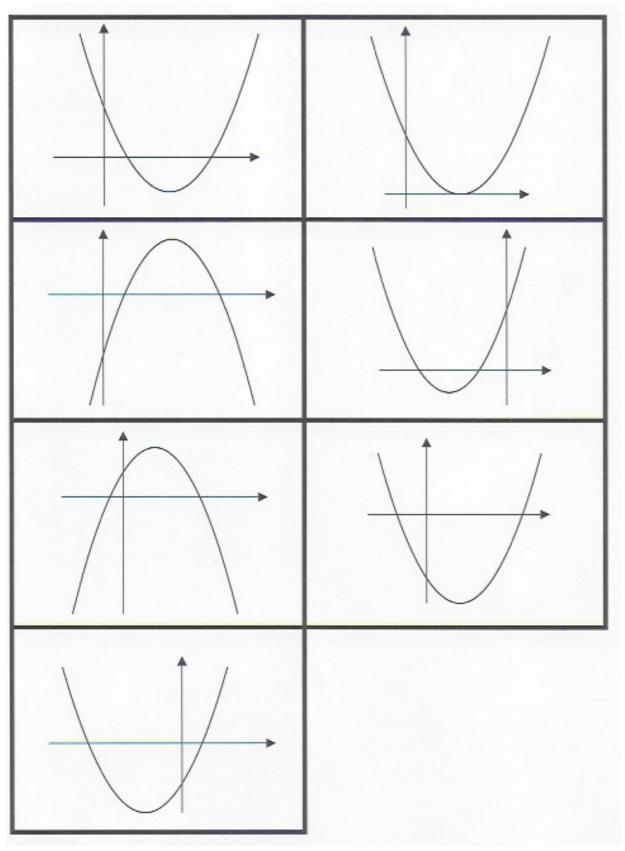
Then use the cards in set E and match this information about the intercepts of the graph with the axes to the 7 sets.

### NEXT

Match the remaining cards in sets A1 and A2 with the other cards.

Resources: Cards sets A1, A2, B, C, D and E.

| $y = x^2 + 6x - 16$             | $y = x^2 - 8x + 16$          |
|---------------------------------|------------------------------|
| $y = 8 - x^2 + 2x$              | $y = 6x - x^2 - 8$           |
| $y = x^2 - 10x + 16$            | $y = x^2 + 6x + 8$           |
| $y = x^2 - 6x - 16$             | y=(x-8)(x+2)                 |
| y = (x+4)(x+2)                  | y=(x+2)(4-x)                 |
| y = (x-4)(2-x)                  | y = (x-8)(x-2)               |
| y = (x-4)(x-4)                  | y=(x+8)(x-2)                 |
| $y = \left(x+3\right)^2 - 25$   | $y = (x-4)^2$                |
| $y=\left(x-5\right)^2-9$        | $y = -(x-3)^2 + 1$           |
| $y = -(x-1)^2 + 9$              | $y = \left(x+3\right)^2 - 1$ |
| $y = \left(x - 3\right)^2 - 25$ | Minimum at (3, –25)          |
| Minimum at (–3, –1)             | Maximum at (1, 9)            |


**CARD SET A1 Sort the cards into 7 sets corresponding to 7 quadratic functions and their properties.** The quadratic functions are written in the forms:  $y = ax^2 + bx + c$ ; y = (x + p)(x + q); and  $y = a(x + r)^2 + s$ 

| Maximum at (3, 1)     | Minimum at (5, –9)   |
|-----------------------|----------------------|
| Minimum at (4, 0)     | Minimum at (-3, -25) |
| x = 0, y = -16        | x = 0, y = 16        |
| x = 0, y = 16         | x=0, y=-8            |
| x = 0, y = 8          | x = 0, y = 8         |
| x = 0, y = -16        | y = 0, x = 8  or  -2 |
| y = 0, x = -4  or  -2 | y = 0, x = -2  or  4 |
| y = 0, x = 4  or  2   | y = 0, x = 8  or  2  |
| y = 0, x = 4          | y = 0, x = -8  or  2 |

**CARD SET A2** Sort the cards into 7 sets corresponding to 7 quadratic functions and their properties The quadratic functions are written in the forms:  $y = ax^2 + bx + c$ ; y = (x + p)(x + q); and  $y = a(x + r)^2 + s$ 

#### CARD SET B

Match the graphs to the corresponding cards showing the equations and properties of the functions.



CARD SET C

| $y = x^2 + 6x - 16$  | $y = x^2 - 8x + 16$ |
|----------------------|---------------------|
| $y = 8 - x^2 + 2x$   | $y = 6x - x^2 - 8$  |
| $y = x^2 - 10x + 16$ | $y = x^2 + 6x + 8$  |
| $y = x^2 - 6x - 16$  | y = (x-8)(x+2)      |
| y = (x+4)(x+2)       | y = (x+2)(4-x)      |
| y = (x-4)(2-x)       | y = (x-8)(x-2)      |
| y = (x-4)(x-4)       | y=(x+8)(x-2)        |

CARD SET D

| $y = \left(x+3\right)^2 - 25$ | $y = (x-4)^2$                |
|-------------------------------|------------------------------|
| $y=\left(x-5\right)^2-9$      | $y = -(x-3)^2 + 1$           |
| $y = -(x-1)^2 + 9$            | $y = \left(x+3\right)^2 - 1$ |
| $y=\left(x-3\right)^2-25$     | Minimum at (3, –25)          |
| Minimum at (-3, -1)           | Maximum at (1, 9)            |

CARD SET E Intercepts with the axes

| x = 0, y = -16        | x = 0, y = 16        |
|-----------------------|----------------------|
| x = 0, y = 16         | x=0, y=-8            |
| x = 0, y = 8          | x = 0, y = 8         |
| x = 0, y = -16        | y = 0, x = 8  or  -2 |
| y = 0, x = -4  or  -2 | y = 0, x = -2  or  4 |
| y = 0, x = 4  or  2   | y = 0, x = 8  or  2  |
| y = 0, x = 4          | y = 0, x = -8  or  2 |

Adapted from the STANDARDS UNIT professional development materials produced by the UK Department for Education and Skills. Author Malcolm Swan.