AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES

SCHOOLS ENRICHMENT CENTRE (AIMSSEC)

AIMING HIGH

ALWAYS PERFECT

$2 \times 3 \times 4 \times 5+1=11 \times 11$

$21 \times 22 \times 23 \times 24+1=505 \times 505$

Pick your own four consecutive numbers, find their product and add one. Is your answer a perfect square?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square

Help

It will help you to learn how to factorize the difference of two squares.
$(a+b)(a-b)=a^{2}-a b+b a-b^{2}=a^{2}-b^{2}$
so we call $a^{2}-b^{2}$ 'the difference of two squares' and factors are given by $a^{2}-b^{2}=(a+b)(a-b)$
See: Difference of Squares: https://aiminghigh.aimssec.ac.za/grades-8-to-10-differences-of-squares/

Extension

Work out the sequence of answers you get when you find the square roots of
$1 \times 2 \times 3 \times 4+1$
$2 \times 3 \times 4 \times 5+1$
$3 \times 4 \times 5 \times 6+1 \ldots$ etc.
What do you notice about this sequence? Can you find a formula for the nth term?
[The sequence of results is given by the formula $2 \mathrm{n}+4$ for the nth term.]
Also see: Take Three from Five https://aiminghigh.aimssec.ac.za/grades-8-to-12-take-three-from-five/

